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Abstract

The recovery of end of life (EOL) products has become an important issue in terms of economic as well 

as social and environmental considerations. Recent rigid environmental regulations also contribute to 

the popularity of disassembly and product recovery topics among academicians and practitioners. 

Disassembly lines have been utilised to break EOL products into pieces and remove parts which can be 

reused in the manufacturing of new products. However, to the best of the authors’ knowledge, there is 

no research on the two-sided disassembly lines, which are used for disassembly of large-sized products. 

Therefore, this research contributes to literature by introducing the two-sided disassembly line balancing 

problem (TDLBP) and modelling it mathematically for the first time. The problem is depicted and the 

challenges are explored through extensive numerical examples. Secondly, a powerful genetic algorithm 

approach, called 2-GA, is developed for solving the introduced TDLBP considering complex AND/OR 

precedence relations. Computational tests are conducted to test the performance of the proposed 2-GA 

and the results are compared to those obtained from CPLEX and tabu search algorithm. From the 

comparison of the obtained solutions, it can be concluded that 2-GA has a superior performance in 

finding optimal (or at least near-optimal) solutions usually within less than one second. 

Keywords: Disassembly line balancing; two-sided lines; mixed-integer linear programming; genetic 
algorithm

1. Introduction

Recently, there has been an increasing interest in disassembly lines, on which end-of-life (EOL) products 

are partitioned into parts. This is majorly due to the shortened product life-cycles and attempts to 

decrease their effects on the environment and economy [1]. Recycling EOL products and 

remanufacturing using valuable parts and/or components removed from EOL products help minimise 

total waste and maintain a sustainable production economy. For these purposes, dismantling the EOL 

products through a set of disassembly operations are the first and vital step.

A set of workstations is brought together via a material transportation system to construct a disassembly 

line on which disassembly operations are performed. Disassembly lines provide advantages such as high 

productivity and so increased utilisation of the resources [2]. The disassembly line balancing problem 

(DLBP) is the problem of partitioning tasks to workstations with the aim of optimising one or more 

performance criterion while satisfying the capacity and precedence constraints. Different from the 
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assembly line balancing problems (ALBPs), DLBPs contain a much more complex precedence 

relationship constraint (as will be exemplified in Section 2). There is only AND precedence relationship 

in the ALBPs, whereas DLBPs have both AND and OR precedence relations, which makes the problem 

even harder to solve (which is already NP-hard). Some studies on DLBPs also consider OR successors 

[3]. However, the current work follows the work of Güngör and Gupta [1] and studies the DLBP without 

OR successor, which have a wide range of applications in real world (see, for example Ding et al. [4], 

Kalayci and Gupta [5] and Ren et al. [6, 7] among others). There also are many other differences between 

ALBPs and DLBPs as clearly explained by Lambert and Gupta [8] and Hezer and Kara [9]. Therefore, 

as will be seen in the computational tests section of this work (Section 4), a more comprehensive as well 

as efficient solution methodology is needed for solving the DLBPs [10].

The two-sided disassembly lines are constructed for dismantling large-sized products, such as large 

electrical households or vehicles used for transportation. Figure 1 provides a schematic representation 

of a two-sided disassembly line. As seen from the figure, the workstations are located across both sides 

of the line (i.e. left and right). The EOL product enters the line from the first workstation and 

parts/components are removed sequentially by the operators located in the workstations. Each 

workstation needs to accomplish assigned tasks into it within the maximum time allowed. As the tasks 

are handled on both sides, the complex precedence relationships must be handled considering the 

predecessors of a task, which may be located on the opposite side of the line. The details on the complex 

relationships and more on the problem definition will be presented in Section 2.

LEFT

RIGHT

Figure 1. The configuration of a two-sided disassembly line

DLBP was introduced by Güngör and Gupta [11] and a shortest-path formulation was proposed by 

Gungor and Gupta [12] to solve the DLBP taking the task failures into account. The DLBP has attracted 

many researchers since then. McGovern and Gupta [13] have shown that the DLBP is NP-hard in the 

problem complexity. Exact methods, mainly utilising mixed-integer linear programming (MILP) models, 

have been developed by researches [14]. Bentaha et al. [15] proposed an exact solution approach for 

solving the DLBPs under uncertainty. In their research, task times have been assumed to be random 



variables with known normal probability distributions. Also, Mete et al. [16] developed a mathematical 

model for solving the DLBP considering resource dependent constraints. Kucukkoc et al. [17] 

introduced Type-E multi-manned DLBP and proposed efficient linear and non-linear models to solve 

the problem. The MILP model proposed by Altekin et al. [18] aimed at maximising the profit while 

determining the parts whose demand is to be fulfilled to generate revenue. Two exact formulations that 

utilise an AND/OR Graph as the main input for the purpose of maintaining the feasibility was proposed 

by Koc et al. [3]. A two-stage approach was also developed by Altekin and Akkan [19] to rebalance the 

disassembly lines in the case of task-failure. Paksoy et al. [20] took into account the fuzzy goals when 

balancing DLBPs. A mathematical model and an ant colony approach were developed by Mete et al. 

[21] to balance a hybrid line consisting of both assembly and disassembly tasks. Li et al. [22] developed 

a fast branch, bound and remember algorithm to obtain state-of-the-art results for simple DLBPs.

Heuristics and metaheuristics have also been developed to get timely-manner solutions for large-size 

problems. To cite a few, beam search algorithm based solution approach was proposed by Mete et al. 

[23] for the DLBP. McGovern and Gupta [24] presented a greedy/2-opt hybrid algorithm to solve the 

multi-objective DLBP, and Ren et al. [14] extended this method to solve the multi-objective DLBP with 

weights-based multi-criteria decision. 

The metaheuristics were mainly on the multi-objective DLBPs. McGovern and Gupta [25] developed a 

genetic algorithm based approach for the multi-objective DLBP. Kalayci et al. [26] used tabu search for 

the sequence-dependent DLBP and Kalayci et al. [27] developed a hybrid neighbourhood search method 

to deal with the sequence-dependent task times in DLBP. A variable neighbourhood search method was 

developed by Ren et al. [28] for the multi-objective DLBP. Swarm-based algorithms have also been 

developed for the variants of the DLBP. See, for example; Agrawal and Tiwari [29], Ding et al. [4], 

Kalayci and Gupta [30] and McGovern and Gupta [31] for ant colony optimisation; Kalayci and Gupta 

[2], Kalayci et al. [32] and Liu and Wang [33] for artificial bee colony algorithm; Kalayci and Gupta [5] 

and Xiao et al. [34] for particle swarm optimisation algorithm; Zhang et al. [35] for artificial fish swarm 

algorithm; Zhu et al. [36] for pareto firefly algorithm; and Liu et al. [37] and Ren et al. [6]  for other 

evolutionary algorithms. A recent survey by Özceylan et al. [10] provides a comprehensive review of 

the algorithms applied to DLBPs. 

Interestingly, this review of the literature makes it clear that no research was conducted on the balancing 

of two-sided disassembly lines. While two-sided ALBPs have been studied extensively (e.g. see 

Bartholdi [38], Li et al. [39], Kucukkoc and Zhang [40], Make et al. [41]), to the best of authors’ 

knowledge, the two-sided disassembly line balancing problem (called TDLBP hereafter) has never been 

studied in the literature. Thus, the basic motivation of this paper is the lack of research on TDLBP. This 

paper mainly contributes to literature by introducing the TDLBP and mathematically modelling it for 

the first time in the literature. Thus, a new disassembly line balancing problem type is brought to the 

interest of both academia and industry. A MILP model, which is capable of solving the TDLBP 



optimally for the small and some medium-sized problems, is developed to formally describe the problem. 

Moreover, a new genetic algorithm approach, called 2-GA, is developed considering the comprehensive 

AND/OR precedence relations on a complex line configuration. This is particularly worthy to note that 

a special scheduling mechanism is needed in the solution methodology since tasks performed on 

opposite sides of the two-sided line may have AND as well as OR precedence relations in between. The 

solution building mechanism of 2-GA is clearly described by pseudo-codes and illustrated through 

numerical examples. A set of 88 instances is generated considering the specifications of TDLBP and a 

comprehensive computational study is carried out to test the performance of the proposed 2-GA. The 

results obtained by 2-GA are compared to those obtained from CPLEX and tabu search (TS). The results 

demonstrate the superiority of the 2-GA in both solution building capacity and search speed. 

The rest of the paper is organised as follows. Section 2, describes the TDLBP and formulates it via a 

MILP model. The challenges are explored in detail and the optimal solution of a numerical example is 

also provided. Section 3 explains the mechanisms of the proposed 2-GA methodology in details via a 

numerical example. The results of the computational study conducted to test the performance of 2-GA 

are presented in Section 4 and the paper is concluded in Section 5 together with some future research 

directions and managerial implications. Data on test problems and the pseudocode of TS are provided 

in Appendices.

2. Problem Statement and Mathematical Model

This section introduces the TDLBP and proposes a MILP model to formulate it with the aim of 

minimising a weighted summation of more than one performance criterion.

2.1. Problem description

The TDLBP is composed of balancing a two-sided disassembly line across which a series of 

workstations are utilised on both left and right sides (as presented in Figure 1 above). Each pair of 

workstations on left and right are called a mated-station. The EOL product enters the line from the first 

mated-workstation and parts are sequentially removed by operators located in the workstations. The 

products are of large-size so they require a two-sided line to prevent operators from wasting their time 

by repeatedly walking around it. 

Each removal task usually has a preferred operation direction (or side) to be performed, i.e. ‘Left (L)’ 

or ‘Right (R)’. Some tasks may be located on either left or right side, called ‘Either (E)’ side task. Each 

task ( ) requires a certain amount of processing time, , to remove a part. Each workstation processes 𝑖 ∈ 𝐼 𝑡𝑖

at least one removal task within the time allowed, called cycle time ( ). Thus, the total workload of 𝐶𝑇

each workstation cannot exceed the cycle time. Also, the tasks must be completed within the cycle time, 

considering the unique starting time of each task. This is particularly important because tasks assigned 

to a specific side of the line may be preceded by those assigned to the other side of the line. 



There are two kinds of precedence relations between tasks: (i) AND precedence and (ii) OR precedence. 

AND precedence relation requires that all predecessors of a specific task must be assigned and 

completed prior to the initialisation of that task. See the precedence relationship diagram of 2P22-OR 

problem presented in Figure 2 (adapted from a well-known problem, P22-OR [42]). The arrows (with 

no arc) represent the AND precedence relation. For example, there is an AND precedence relation 

between tasks 3 and 4. Hence, task 3 must be completed before the initialisation of task 4. 
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Figure 2. Representation of the precedence relations for 2P22-OR problem

From the view of the OR precedence relation, it is satisfactory to assign and complete at least one of its 

OR predecessors to initialise a specific task. The arrows with an arc in the figure denote the OR 

precedence relations. For example, there is an OR precedence relation between task 22 and its 

predecessors (tasks 2 and 4). Therefore, to be able to start task 22, it is satisfactory to complete either 

task 2 or task 4. Thus, the earliest starting time of a task can be generalised as follows. Assume that 

 is the set of AND predecessors of task . Similarly,  is the set of OR predecessors of ANDP(𝑖) 𝑖 ORP(𝑖)

task . The calculation for the earliest starting time of task  can be generalised as 𝑖 𝑖 𝐸𝑆𝑇(𝑖) = max 

, where  denotes the completion time of task , which is equivalent to { min
𝑔 ∈ 𝑂𝑅𝑃(𝑖)

{𝑡𝑐
𝑔}, max

ℎ ∈ 𝐴𝑁𝐷(𝑖)
{𝑡𝑐

ℎ}} 𝑡𝑐
𝑔 𝑔

the sum of its earliest starting time and processing time, i.e. . This condition 𝑡𝑐
𝑔 = 𝐸𝑆𝑇(𝑔) + 𝑡𝑔

differentiates the TDLBP from the TALBP and makes the problem, which is already NP-hard, even 

harder to solve. Figure 3 presents this situation through a possible task assignment with and without 

using the OR precedence. As seen from the figure, task 22 can start as early as  time units (after 𝑡𝑠
22 = 38

the completion of one of its OR predecessors, i.e. task 2) in a TDLBP with OR precedence relation. 

However, its earliest start time would be  if the problem was a TALBP (without an OR 𝑡𝑠
22 = 55

precedence relationship between task 22 and its predecessors). As seen clearly, the existence of the OR 



relations has the potential of increasing the number of possible combinations of tasks to workstations, 

which would eventually help shorten the line and minimise the number of workstations.

Figure 3. The representation of having an OR relation on a two-sided line

A MILP model is developed for balancing the TDLBP carefully handling the abovementioned 

constraints with the aim of minimising the number of mated-stations (or line length, in other words) as 

a primary objective and the number of workstations as a secondary objective. The following assumptions 

are made to develop the model. First of all, the tasks and their processing times are known and 

deterministic. Only one operator may be utilised in each workstation (no parallelisation is allowed). 

Neither work in process is allowed between workstations nor breakdowns/failures are considered in the 

model. The cycle time is assumed to be known and deterministic and walking times are ignored.

2.2. Mathematical model

This section presents the MILP model developed for solving the TDLBP optimally. The notation is 

presented as follows.

Indices:

𝑖,ℎ,𝑝 Task index.

𝑗,𝑔 Mated-station index.

𝑘,𝑓 Side of the line; .𝑘,𝑓 = {1     if the side is left
2  if the side is right

(𝑗,𝑘) The  side workstation of the mated-station .𝑘 𝑗

Parameters:

𝐼 Set of tasks in the precedence diagram, .𝐼 = {1,2,…,𝑖,…,𝑛𝑡}

𝐽 Set of mated-stations, .𝐽 = {1,2,…,𝑗,…,𝑛𝑚}

𝐶𝑇 Cycle time

𝐴𝐿 Set of tasks which should be performed at a left-side workstation, .𝐴𝐿 ⊆ 𝐼

𝐴𝑅 Set of tasks which should be performed at a right-side workstation, .𝐴𝑅 ⊆ 𝐼

𝐴𝐸 Set of tasks which can be performed on left or right side of a mated-station, 

.𝐴𝐸 ⊆ 𝐼

ANDP(𝑖) Set of AND predecessor of task .𝑖



ANDPT Set of tasks which have AND predecessors.

ORP(𝑖) Set of OR predecessor of task .𝑖

ORPT Set of tasks which have OR predecessors.

𝐾(𝑖) The set of integers which indicate the preferred operation direction of task , 𝑖

.𝐾(𝑖) = { {1}    if 𝑖 ∈ 𝐴𝑅
{2}    if 𝑖 ∈ 𝐴𝐿
{1,2}  if 𝑖 ∈ 𝐴𝐸

𝜓 A large positive number.
𝑡𝑖 Processing time of task .𝑖

Decision variables:

𝑡𝑠
𝑖 Start time of task .𝑖

𝑥𝑖𝑗 1, if task  is assigned to mated-station ; 0, otherwise.𝑖 𝑗
𝑤𝑖𝑘 1, if task  is assigned to side ; 0, otherwise.𝑖 𝑘
𝑧ℎ𝑖 1, if task  precedes task  in the precedence diagram or task  is operated earlier ℎ  𝑖 ℎ

than task  when both tasks are allocated to the same workstation; 0, otherwise.𝑖
𝐹𝑗 1, if both sides of mated-station  are utilised; 0, otherwise.𝑗
𝐺𝑗 1, if only one side of mated-station  is utilised; 0, otherwise.𝑗
𝑈𝑗𝑘 1, if workstation  is utilised; 0, otherwise.(𝑗,𝑘)

The model is presented as follows on the basis of the relative order time. Namely, the tasks in the first 

mated-station is finished within , and the tasks in the second mated-station is operated within [0,𝐶𝑇]

. [𝐶𝑇,2 ∙ 𝐶𝑇]

Min  𝑤1 ∙ ∑
𝑗 ∈ 𝐽

(𝐹𝑗 + 𝐺𝑗) + 𝑤2 ∙ ∑
𝑗 ∈ 𝐽

∑
𝑘 = 1,2

𝑈𝑗𝑘 (1)

∑
𝑗 ∈ 𝐽

𝑥𝑖𝑗 = 1      ∀𝑖 ∈ 𝐼 (2)

∑
𝑘 ∈ 𝐾(𝑖)

𝑤𝑖𝑘 = 1      ∀𝑖 ∈ 𝐼 (3)

𝑡𝑠
𝑖 + 𝜓 ∙ (1 ― 𝑧ℎ𝑖) ≥ 𝑡𝑠

ℎ + 𝑡ℎ      ∀𝑖 ∈ 𝐼,ℎ ∈ 𝐼 ∧ 𝑖 ≠ ℎ (4)

𝑧ℎ𝑖 + 𝑧𝑖ℎ = 1      ∀ 𝑖 ∈ AND𝑃𝑇, ℎ ∈ ANDP(𝑖) (5)

𝑧ℎ𝑖 = 1      ∀ 𝑖 ∈ AND𝑃𝑇, ℎ ∈ ANDP(𝑖) (6)

∑
ℎ ∈ 𝑂𝑅𝑃(𝑖)

𝑧ℎ𝑖 ≥ 1      ∀ 𝑖 ∈ 𝑂𝑅𝑃𝑇 (7)

 𝑧𝑖ℎ + 𝑧ℎ𝑝 ―1 ≤ 𝑧𝑖𝑝    ∀𝑖,ℎ,𝑝, 𝑖 ≠ ℎ, ℎ ≠ 𝑝 and 𝑖 ≠ 𝑝 (8)



𝑧𝑖ℎ + 𝑧ℎ𝑖 ≤ 1      ∀𝑖 ∈ 𝐼,ℎ ∈ 𝐼 ∧ 𝑖 ≠ ℎ (9)

𝑧𝑖ℎ + 𝑧ℎ𝑖 + 𝜓 ∙ (2 ― 𝑥𝑖𝑗 ― 𝑥ℎ𝑗) + 𝜓 ∙ (2 ― 𝑤𝑖𝑘 ― 𝑤ℎ𝑘) ≥ 1     

        ∀𝑖 ∈ 𝐼,ℎ ∈ 𝐼 ∧ 𝑖 ≠ ℎ, 𝑗 ∈ 𝐽,𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝)
(10)

𝑡𝑠
𝑝 + 𝜓 ∙ (2 ― 𝑥𝑖𝑗 ― 𝑥𝑝𝑗) + 𝜓 ∙ (2 ― 𝑤𝑖𝑘 ― 𝑤𝑝𝑘) + 𝜓(1 ― 𝑧𝑖𝑝) ≥ 𝑡𝑠

𝑖 + 𝑡𝑖

         ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝐼 ∧ 𝑖 ≠ 𝑝, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾(𝑖)⋂𝐾(𝑝)
(11)

𝑡𝑠
𝑖 ≥ 𝐶𝑇 ∙ (∑

𝑗 ∈ 𝐽

((𝑗 ― 1) ∙ 𝑥𝑖𝑗))    ∀𝑖 ∈ 𝐼 (12)

𝑡𝑠
𝑖 + 𝑡𝑖 ≤ 𝐶𝑇 ∙ (∑

𝑗 ∈ 𝐽

(𝑗 ∙ 𝑥𝑖𝑗))    ∀𝑖 ∈ 𝐼 (13)

𝑈𝑗𝑘 ≥ 𝑥𝑖𝑗 + 𝑤𝑖𝑘 ― 1       ∀𝑖 ∈ 𝐼,𝑗 ∈ 𝐽,𝑘 = 1,2 (14)

∑
𝑘 = 1,2

𝑈𝑗𝑘 ― 2 ∙ 𝐹𝑗 ― 𝐺𝑗 = 0       ∀𝑗 ∈ 𝐽 (15)

(𝐹𝑗 + 𝐺𝑗) ≥ (𝐹𝑗 + 1 + 𝐺𝑗 + 1)      ∀𝑗 ∈ 𝐽 ∧ 𝑗 < 𝑛𝑚 (16)

Expression (1) minimises the weighted mated-station number and workstation number, where  and 𝑤1

 are two parameters set to 100 and 1, respectively. Thus, the length of the line is minimised ensuring 𝑤2

that the mated-stations are loaded prior to opening a new one. Constraint (2) and constraint (3) indicate 

that a task must be allocated to exactly one mated-station and one side. Constraints (4-8) deal with the 

precedence constraint, indicating that task  can be started only when its AND predecessors have been 𝑖

completed (in expression (6)) and at least one of its OR predecessors has been completed (in expression 

(7)). Constraint (8) donates that task  is executed before task  when task  is executed before task  ℎ 𝑝 ℎ 𝑖

and task  is executed before task . Constraints (9-11) restrain the task assignment on a workstation, 𝑖 𝑝

and expression (11) is reduced to  when task  is allocated before task  and they are allocated 𝑡𝑠
𝑝 ≥ 𝑡𝑠

𝑖 + 𝑡𝑖 𝑖 𝑝

to the same workstation. Constraint (12) and constraint (13) deal with cycle time constraint, indicating 

that a task is operated during the available start and end time of the corresponding mated-station. 

Constraint (14) ensures that  when there is at least one task allocated to workstation . 𝑈𝑗𝑘 = 1  (𝑗,𝑘)

Constraint (15) calculates  and , and constraint (16) indicates that a mated-station can be utilised 𝐹𝑗 𝐺𝑗

only when its former mated-station is utilised. Note that the constraints pertaining to precedence 

relationship are different from those in TALBPs.

2.3. Numerical example

The 2P22-OR problem, for which the precedence relationship diagram was given in Figure 2 (see 

Section 2.1), was attempted to be solved using the MILP model developed. For this aim, the model was 

coded in General Algebraic Modelling Software (GAMS) v23.0 and run on a PC equipped with Intel® 



Core™ i7-6700HQ CPU @2.60 GHz and 16 GB of RAM. However, the CPLEX solver did not produce 

any solution within 11000 seconds, which is a considerably large period of time. Therefore, a 10-task 

problem, 2P10-OR (modified from the well-known P10-OR [24]) was solved using the CPLEX solver 

embedded in GAMS. The problem data and the optimal solution of the problem are presented in Figure 

4 (a dummy part –A1– with no processing time is given to simplify the presentation of the precedence 

relations). The cycle time was considered to be -time units and the optimum solution was 𝐶𝑇 = 36

obtained within 1 second. 

Figure 4. The problem data for the 2P10-OR problem and its optimal solution

As seen from the solution, all constraints have been satisfied. A total of five workstations have been 

utilised in four mated-stations and the objective value is found to be 405 (based on the values of 

parameters  and ). The right-side workstations in Mated Stations I and III and the left side 𝑤1 𝑤2

workstation in Mated Station II are fully loaded (36-time units). On the other hand, the workstations on 

the right side of Mated-stations II and IV and the left side of the Mated-station I have not been utilised, 

no tasks have been assigned in other words. There exists a total of seven-time units idle time (four- and 

three-time units on the left of the Mated Stations III and IV, respectively). The efficiency of the line can 

simply be calculated as , which is 𝐿𝐸(%) = 100 × ∑
𝑖 ∈ 𝐼𝑡𝑖 (𝐾 × 𝐶) = 100 × 173/(5 × 36)≅96.11%

considerably high. 

3. Genetic Algorithm based Approach

This section explains the GA based approach, called 2-GA, proposed for solving the TDLBP especially 

when the mathematical models fall short. In the following subsections, the outline of the 2-GA is 

provided first, followed by the details of the new solution building and search mechanisms. 



3.1. Outline of the 2-GA

GA is an evolutionary algorithm inspired by the survival of the fittest. Its stochastic search mechanism 

enables the emergence of new individuals derived mostly from the fittest individuals, called parents. So 

that the natural selection is imitated as the fittest individuals are selected for reproduction in order to 

form the next generation. GA is selected in this research due to its high performance in solving the 

combinatorial engineering problems. In addition to its successful implementations on DLBPs (as given 

in Section 1), it has been successfully applied for solving various complex design and optimisation 

problems from transportation [43, 44] to scheduling [45] and ALBPs [46, 47]. 

The outline of the 2-GA is presented in Figure 5 as a pseudo-code. Details on sub methods will be 

provided after the explanations on the general outline of the algorithm.

Algorithm 2-GA()
1
2
3
4
5
  5.1
  5.2

  5.3
  5.4
  5.5
  5.6
  5.7
6
7

Initialise
Generate Initial Population
Evaluate Chromosomes (Calculate Fitness)
iter := 1

WHILE (iter  maxIter)≤
Select Parents using Tournament Selection
Apply Genetic Operators (Permutation Crossover, Insert&Swap 
Mutation)
Repair Mutants after Mutation
Remove Duplications 
Evaluate New Individuals (Calculate Fitness)
Form the New Generation (Replace the Worst in the Population)
iter++

ENDWHILE
Report the Best in the Population

Figure 5. The general outline of the proposed algorithm

As seen from Figure 5, the algorithm is initialised and the initial population is generated building up a 

total of popSize chromosomes (note that the procedure followed when building a feasible chromosome 

will be presented in Section 3.2). Duplication of chromosomes is not allowed to have a diverse 

population. Each chromosome is then decoded using a novel approach considering the unique feature 

of the TDLBP to evaluate and calculate fitness values (the procedure will be given in Section 3.3). This 

process plays a vital role in the success of the implemented algorithm as the problem contains complex 

AND/OR precedence relations and the tasks are performed on both sides of the line, which requires a 

sophisticated scheduling effort. 

Tournament selection is applied to select parents from the population to undergo genetic operators 

(crossover and mutation). The tournament size is determined by  where  ⌈0.15 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒⌉ + ⌈𝑋⌉ +

denotes the smallest integer greater than or equal to . The value of this parameter is determined with 𝑋

the consideration of preserving diversity while giving higher chance to the fittest individuals for 

reproduction. More details on genetic operators will be provided in Section 3.4.



Following the application of the genetic operators, a number of new individuals will be obtained. Prior 

to evaluating their fitness values, each new individual is checked and it is deleted if it duplicates any 

chromosome in the population. To form the new generation, the worst chromosomes in the population 

are replaced by the best children comparing their fitness values, as long as there is any newly obtained 

better individual (will be explained in detail in Section 3.5). This cycle continues until the maximum 

iteration number is exceeded and the best solution is reported. 

3.2. Encoding

The procedure used for generating a feasible sequence, chromosome, is presented in Figure 6. The 

chromosomes are built considering the precedence relationships to prevent infeasibility. For this aim, 

an array called Pred[] is updated after assigning a new task to determine which tasks are available in 

terms of the precedence relations. The term nbTasks represents the number of tasks to be assigned. 

When a task is selected and assigned to the chromosome, denoted with chrom{}, the temporary 

precedence relationship matrix, TempPRMatrix[][], is updated and available tasks are determined 

based on the updated Pred[] array. A task can be available if it has no unassigned AND predecessor 

or at least one of its OR predecessors (if any) has been assigned. A submethod, selectTask(), is 

invoked to determine available tasks based on the Pred[] array and select a task. The pseudo-code of 

this submethod is exhibited in Figure 7. When a task is selected, it is marked as assigned with the help 

of TempTasks[] array, and the status of its both AND and OR successors have been updated on the 

temporary TempPRMatrix[][]. The returned value, i.e. selectedTask by selectTask() 

method, is added to the chromosome and this procedure is continued until all tasks have been sequenced. 

Submethod  buildChrom()
1
2
3
  3.1
  3.2
    3.2.1
    3.2.2
      3.2.2.1

      3.2.2.2
        
      3.2.2.3

      3.2.2.4
      3.2.2.5
      3.2.2.6
    3.2.3
      3.2.3.1
    3.2.4
      3.2.4.1
    3.2.5
      3.2.5.1
    3.2.6

Initialise
chrom := {}
WHILE (chrom.size() < nbTasks)

i := 1

WHILE (i  nbTasks)  //Determine Pred[] array for precedences≤
total1 := 0, total2 := 0, total3 := 0; j := 1

WHILE (j  nbTasks)≤
IF (TempPRMatrix[j][i] = 1)

total1++
ELSE IF (TempPRMatrix[j][i] = 2)

total2++
ELSE IF (TempPRMatrix[j][i] = 3)

total3++
ENDIF
j++

ENDWHILE
IF (total1 > 0)

Pred[i] := total1
ELSE IF (total3 > 0)

Pred[i] := 0
ELSE IF (total2 > 0)

Pred[i] := total2
ELSE



      3.2.6.1
    3.2.7
    3.2.8
    3.2.9
    3.2.10
  3.3
4

Pred[i] := 0
ENDIF
selectedTask := selectTask() //call submethod to select a task 
Add selectedTask to chrom{}
i++

ENDWHILE
ENDWHILE

Figure 6. The procedure used for building up a feasible chromosome

Submethod   selectTask()
1
2
3
4
  4.1
  4.2
  4.3
  4.4
  4.5
  4.6
    4.6.1
      4.6.1.1
    4.6.2
      4.6.2.1
    4.6.3
    4.6.4
  4.7
  4.8
  4.9
5
6

Initialise, reset TempTasks[] and TempPRMatrix[][]
selectedTask := -1, avTasks := {}
count = 0
WHILE (count < nbTasks) //check all available tasks

IF (Pred[i] = 0 and TempTasks[i] != 0)
Add TempTasks[i] to avTasks{}

ENDIF
Randomly select a task from avTasks{} and assign to selectedTask
i := 1
WHILE (i < nbTasks) //update precedence issues 

IF (TempPRMatrix[selectedTask][i] = 2
TempPRMatrix[selectedTask][i] := 3

ELSE
TempPRMatrix[selectedTask][i] := 0

ENDIF
i++

ENDWHILE
TempTasks[selectedTask] := 0
count++

ENDWHILE
return selectedTask

Figure 7. The procedure used for selecting a task

Figure 8 presents a feasible chromosome sample for 2P22-OR problem, whose problem data was given 

in Figure 2. As seen from the chromosome, the sequence does not violate the precedence relations. To 

give an example, tasks 2 and 4 are the OR predecessors of task 22 (as given in Figure 2). The assignment 

of task 2 prior to task 22 is enough to sustain feasibility in terms of the precedence relations of this 

particular task. 

1 2 12 20 3 21 11 22 7 14 4 16 15 19 6 18 5 17 13 8 10 9

Figure 8. Representation of a feasible chromosome sample

3.3. Decoding

The chromosomes created to generate the initial population and those obtained after the genetic 

operators are evaluated using the decoding procedure given in Figure 9. The decoding procedure applies 

a stochastic task allocation mechanism to explore the search space more effectively. The tasks that can 

be assigned to either side are assigned to left or right side, by a random decision given by the computer. 

The tasks on the chromosome are assigned to workstations based on their sequence on the chromosome. 

Submethod decode()
1
2
3
  3.1

Initialise
nbMS := 1, ctLeft := 0, ctRight := 0, Count := 0
WHILE (count < nbTasks) //until all tasks are assigned

Get the next task in the chromosome



  3.2
    3.2.1
  3.3
    3.3.1
  3.4
    3.4.1
  3.5
  3.6
  3.7
    3.7.1
    3.7.2
      3.7.2.1
      3.7.2.2
      3.7.2.3
      3.7.2.4
      3.7.2.5
    3.7.3
  3.8
    3.8.1
    3.8.2
      3.8.2.1
      3.8.2.2
      3.8.2.3
      3.8.2.4
      3.8.2.5
    3.8.3
   3.9
   3.10
     3.10.1
     3.10.2
     3.10.3
   3.11
4

IF (The side of the task is Left)
side := 0

ELSE IF (The side of the task is Right)
side := 1

ELSE //The side of the task is Either
Select the side randomly (0 or 1)

ENDIF
isAssigned := false
IF (side = 0) //left side

es := max(ctLeft, max(ESTOR[task], ESTAND[task]))

IF ((es + TaskTimes[task])  CT)≤
Assign task to the current position
ctLeft := es + TaskTimes[task]
updateEST(task, ctLeft)
isAssigned := true
count++

ENDIF
ELSE IF (side = 1) //right side

es := max(ctRight, max(ESTOR[task], ESTAND[task]))

IF ((es + TaskTimes[task])  CT) ≤
Assign task to the current position
ctRight := es + TaskTimes[task]
updateEST(task, ctRight)
isAssigned := true
count++

ENDIF
ENDIF
IF (isAssigned = false) //The task is not assigned

nbMS++
Reset ESTOR and ESTAND
ctLeft := 0, ctRight := 0

ENDIF
ENDWHILE

Figure 9. The procedure used for decoding chromosomes

The assignment procedure starts from the first task on the chromosome. It is assigned to its preferred 

side (left or right), if any. If it is an E type task, the assignment process starts from a randomly selected 

side. When a task is assigned, the current time holder of the current position (ctLeft or ctRight) is 

incremented by . The term es corresponds to the earliest starting time of the task, ′𝑒𝑠 +  𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒′

calculated by . So, the earliest starting time 𝑒𝑠 =  𝑚𝑎𝑥(𝑐𝑡𝐿𝑒𝑓𝑡, 𝑚𝑎𝑥(𝐸𝑆𝑇𝑂𝑅[𝑡𝑎𝑠𝑘], 𝐸𝑆𝑇𝐴𝑁𝐷[𝑡𝑎𝑠𝑘]))

is the maximum of ctLeft, ESTOR[] and ESTAND[] value. ESTOR[] and ESTAND[] hold the 

completion time of the task’s OR and AND predecessors. By this way, the tasks that may have been 

assigned to the other side of the line are also taken into account in terms of the precedence relations. A 

task can only be assigned to the current side if  . The task is marked as 𝑒𝑠 + 𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑠[𝑡𝑎𝑠𝑘] ≤ 𝐶𝑇

assigned and the corresponding current time holder (ctLeft or ctRight) is updated.  It is very 

important to update the ESTOR[] and ESTAND[] arrays every time a new task is assigned. To update 

ESTAND[] array, the array values of all AND successors of the assigned task are set to the completion 

time of the task. As for the ESTOR[] array, the array values of the OR successors are set to the minimum 

completion time among the corresponding task’s OR predecessors. 



If a task in the sequence cannot be assigned to the current mated station due to insufficient capacity, a 

new mated-station is opened (nbMS++) and the values of ESTOR[] and ESTAND[] arrays, and the 

current time holders ctLeft and ctRight are reset to zero. The task is assigned to the preferred side 

(if no preference, selected randomly) and this cycle continues until all tasks are assigned. 

Figure 10 presents the decoded assignment solution of the best chromosome obtained by 2-GA after 

5000 iterations (CT=37-time units). As seen from the solution, seven workstations are utilised within 

four mated-stations and the idle times are very small. 

a) Best Chromosome

b) Decoded Solution

Figure 10. The best balancing solution obtained using the decoding procedure

3.4. Genetic operators and repairing

Crossover is applied considering the permutation encoding nature of the chromosomes. Two parents are 

selected from the population via tournament selection and one-point permutation crossover is applied 

as illustrated in Figure 11. A random cutting point is determined and the parents are divided into two 

parts, i.e. head and tail. Head1 and Head2 construct the heading parts of Child1 and Child2, respectively. 

The tails of the children are completed deriving the missing genes as in the sequence they appear in the 

other parent. For example, the missing genes for Child1 are added in the tail of Child1 as in the sequence 

that they appear on Parent2 to obtain a complete as well as a feasible chromosome. Thus, the 

chromosome does not violate the precedence relations. The missing genes for Child2 are also completed 

similarly (based on their sequence on Parent1) and two complete individuals (children) are obtained 

after each crossover. This process is repeated by  times (where  represents the 𝐶𝑅 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 𝐶𝑅

crossover rate) and children are kept (after removing duplicated ones, if any) for fitness evaluation. 



1 3 2 22 4 12 7 21 15 13 20 19 6 14 16 5 11 8 18 10 17 9

1 2 22 11 12 20 7 21 6 14 5 18 17 3 10 15 9 4 8 13 16 19

Head1

Head2

Tail1

Tail2

1 3 2 22 4 12 11 20 7 21 6 14 5 18 17 10 15 9 8 13 16 19

1 2 22 11 12 20 3 4 7 21 15 13 19 6 14 16 5 8 18 10 17 9

Parent2

Child2

Child1

Parent1

Cutting Point(a)

(b)

1 3 2 12 11 21 4 22 16 6 10 7 13 5 9 8 14 20 17 15 18 19

1 3 2 12 22 21 4 11 16 6 10 7 13 5 9 8 14 20 17 15 18 19

Swap Mutation

Parent

Mutant

1 2 22 11 5 12 9 15 6 7 21 18 8 10 19 3 13 20 4 16 14 17

1 2 22 11 5 9 15 6 7 12 21 18 8 10 19 3 13 20 4 16 14 17

Parent

Mutant

Insert Mutation

(c)

1 3 10 4 16 21 22 2 19 12 6 5 20 11 7 8 9 15 14 18 17 13Infeasible

Feasible

Repairing

1 3 4 16 21 22 2 12 6 10 5 20 11 7 8 9 15 19 14 18 17 13

Figure 11. Genetic operators; (a) Crossover, (b) Mutation and (c) Repairing mechanisms

Insert and swap mutations are applied to parents selected from the population. A random number, , 𝑟𝑛𝑑

between [0-1) is determined and insert mutation is applied if . On the contrary, swap 0 ≤ 𝑟𝑛𝑑 < 0.5

mutation is applied if . To apply the insert mutation, two random numbers (i.e. ) 0.5 ≤ 𝑟𝑛𝑑 < 1 𝑟1 < 𝑟2

are determined between 1 and the length of the chromosome. The gene at location  is removed and 𝑟1

relocated at location . As for the swap mutation, the genes at randomly determined locations (i.e.  𝑟2 𝑟1

and ) are swapped. Both mutation strategies are presented in Figure 11. Note that the newly obtained 𝑟2

children after mutation (mutants) may be infeasible in terms of the precedence relations. Therefore, a 

problem specific repair procedure is applied following the mutation. After the repairing process, it is 

ensured that every task is sequenced after all of its AND predecessors and at least one of its OR 



successors (if any). As seen from the figure, the infeasible mutant violates the precedence relations in 

terms of both AND and OR relations. Based on the precedence relations (which was given in Figure 2), 

task 10 must be located after at least one of its OR predecessors, i.e. task 6 or task 8. So, it is relocated 

after the first OR predecessor, task 6, on the chromosome. On the other hand, task 19 must be located 

after its AND predecessor, namely task 15. Therefore, it is moved to immediately after task 15 on the 

chromosome. Thus, a feasible chromosome is obtained eventually.

3.5. Forming the new generation

The new generation is formed replacing the worst chromosomes in the population with better individuals 

(if any) obtained during crossover and mutation. Thus, the fitness value of the worst chromosome in the 

population is compared to that of the best chromosome among the new individuals. If the new individual 

is better than the worst in the chromosome, the worst is replaced and the second best and second worst 

individuals are compared. This procedure is repeated until there is no better individual among the 

children. Note that the chromosome duplications are avoided as duplicated ones are already destroyed 

after the application of the genetic operators. Replacing the worst policy also helps to preserve the best 

chromosomes in the population, commonly known as elitism. 

Figure 12 presents the convergence of 2-GA for solving the 2P22-OR problem. The best solution (with 

four mated-stations and seven workstations already presented in Figure 10) was obtained in the 36th 

iteration. Therefore, only the first 100 iterations (out of 1000 iterations) are depicted for the purpose of 

increasing the readability of the graph (note that iteration ‘0’ corresponds to the initial population).

Figure 12. The convergence of 2-GA through the first 100 iterations

4. Computational Tests

Computational tests have been conducted to observe the performance of the proposed MILP model and 

the metaheuristic approach, 2-GA. The same problems have also been solved using a tabu search (TS) 

algorithm for the comparison purpose. The pseudocode of utilised TS algorithm is presented in 

Appendix-C. The MILP model was solved via CPLEX solver embedded into GAMS. The 



metaheuristics, 2-GA and TS, were coded in Java using Eclipse IDE v4.7.3a. Experiments have been 

done on a PC equipped with Intel® Core™ i7-6700HQ CPU @2.60 GHz and 16 GB of RAM. 

As the TDLBP has not been studied previously, there was no dataset which can be used directly. 

Therefore, the test data used for other disassembly line balancing problems in the literature, belonging 

to various case studies ranging from the disassembly of a ball-point pen to a laptop and a Samsung SCH-

3500 cell phone, has been modified and adapted to the specifications of the TDLBP. Specifically, test 

problems 2P8, 2P10, 2P10-OR, 2P22-OR, 2P25, 2P47 and 2P47-OR have been adapted from P8 [26], 

P10 [2], P10-OR [24], P22-OR [42], P25 [2], P47 [32] and P47-OR [42], respectively. Test problems 

2P8-OR and 2P25-OR have been modified from 2P8 and 2P25, respectively. Note that 2P47 and 2P47-

OR have three sets of operation times, referred to as A, B and C, each of which has been considered as 

a separate test problem. All data used for the test problems has been provided in Appendix-A for future 

researches (except for 2P10-OR and 2P22-OR, as these problems have already been presented in Section 

2). Test problems have been grouped into three categories (small, medium and large) based on their size.

The solutions obtained by CPLEX, 2-GA and TS under various CT constraints are presented in Table 

1, Table 2 and Table 3 for small, medium and large-size problems, respectively. In Table 1, the column 

OPT - NM[NS] given under CPLEX reports the optimal results within the time reported in the column 

CPU, where NM and NS denote the number of mated stations and the number of workstations, 

respectively. The column Optimality indicates whether the optimum solution is obtained or not (Y and 

U denote Yes and Unknown, respectively). As the problems in Table 1 are small-sized, the optimal 

solutions have been obtained by CPLEX for all of them.



Table 1. Test problems and their solutions for small-size problems

CPLEX 2-GA TS# Test 
Problem

 ∑
𝒊 ∈ 𝑰𝒕𝒊 CT

OPT 
NM[NS]

CPU
(s)

Optimality BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev
CPU (ms)

BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev 
CPU (ms)

1 2P8 149 36 5[6] <1 Y 5[6] 5[6] 0 0 <10 <10 5[6] 5[6] 0 0 <10 <10
2 37 5[6] <1 Y 5[6] 5[6] 0 0 <10 <10 5[6] 5[6] 0 0 <10 <10
3 38 4[4] <1 Y 4[4] 4[5] 0 0.25 <10 <10 4[5] 4[5] 0 0 <10 <10
4 39 4[4] <1 Y 4[4] 4[4] 0 0.25 <10 <10 4[4] 4[4] 0 0 <10 <10
5 40 4[4] <1 Y 4[4] 4[4] 0 0 <10 <10 4[4] 4[4] 0 0 <10 <10
6 41 4[4] <1 Y 4[4] 4[5] 0 0.25 <10 <10 4[4] 4[4] 0 0 <10 <10
7 2P10 169 36 4[5] <1 Y 4[5] 4[5] 0 0 <10 <10 4[5] 4[6] 0 0.2 <10 <10
8 39 4[5] <1 Y 4[5] 4[5] 0 0 <10 <10 4[5] 4[6] 0 0.2 <10 <10
9 42 3[5] <1 Y 3[5] 3[5] 0 0 <10 <10 3[5] 4[5] 0.33 0 <10 <10
10 44 3[5] <1 Y 3[5] 3[5] 0 0 <10 <10 3[5] 4[5] 0.33 0 <10 <10
11 46 3[4] <1 Y 3[4] 4[5] 0.33 0.25 <10 <10 3[4] 4[5] 0.33 0.25 <10 <10
12 48 2[4] <1 Y 2[4] 2[4] 0 0 <10 <10 2[4] 3[5] 0.5 0.25 <10 <10
13 2P8-OR 149 36 5[5] <1 Y 5[5] 5[5] 0 0 <10 <10 5[5] 5[6] 0 0.2 <10 <10
14 37 4[5] <1 Y 4[5] 4[5] 0 0 <10 <10 4[5] 5[6] 0.25 0.2 <10 <10
15 38 3[4] <1 Y 3[4] 3[4] 0 0 <10 <10 3[5] 4[5] 0.33 0 <10 <10
16 39 3[4] <1 Y 3[4] 3[5] 0 0.25 <10 <10 3[4] 4[4] 0.33 0 <10 <10
17 40 3[4] <1 Y 3[4] 3[4] 0 0 <10 <10 3[4] 4[4] 0.33 0 <10 <10
18 41 3[4] <1 Y 3[4] 3[4] 0 0 <10 <10 3[4] 4[4] 0.33 0 <10 <10
19 2P10-OR 173 38 4[5] <1 Y 4[5] 4[5] 0 0 <10 <10 4[5] 4[6] 0 0.2 <10 <10
20 40 4[5] 1 Y 4[5] 4[5] 0 0 <10 <10 4[5] 4[6] 0 0.2 <10 <10
21 43 3[5] <1 Y 3[5] 3[5] 0 0 <10 <10 3[5] 4[6] 0.33 0.2 <10 <10
22 45 3[5] 1 Y 3[5] 3[5] 0 0 <10 <10 3[5] 4[5] 0.33 0 <10 <10
23 46 3[4] 1 Y 3[4] 3[5] 0 0.25 <10 <10 3[5] 3[5] 0 0 <10 <10
24 48 2[4] <1 Y 2[4] 2[4] 0 0 <10 <10 2[4] 3[5] 0.5 0.25 <10 <10

*Best in bold

 



Table 2. Test problems and their solutions for medium-size problems

CPLEX 2-GA TS# Test 
Problem

 ∑
𝒊 ∈ 𝑰𝒕𝒊 CT

NM[NS] CPU
(s)

Optimality BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev
CPU (ms)

BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev
CPU (ms)

25 2P25 155 18 5[9] 110 Y 6[10] 6[10] 0 0 67 27 5[10] 7[11] 0.4 0.1 46 13
26 20 4[8] 139 Y 5[8] 5[9] 0 0.125 68 27 5[9] 5[10] 0 0.111 52 15
27 22 4[8] 162 Y 4[8] 4[8] 0 0 71 34 4[8] 5[9] 0.25 0.125 49 15
28 24 4[7] 1800 U 4[7] 4[8] 0 0.142 95 44 4[7] 5[9] 0.25 0.285 63 25
29 26 4[7] 1800 U 4[7] 4[7] 0 0 60 33 4[7] 4[8] 0 0.142 45 16
30 28 3[6] 32 Y 3[6] 3[6] 0 0 80 40 3[6] 4[7] 0.333 0.166 47 16
31 30 3[6] 977 Y 3[6] 3[6] 0 0 64 28 3[6] 4[7] 0.333 0.166 85 24
32 32 3[5] 64 Y 3[5] 3[6] 0 0.2 86 51 3[5] 3[6] 0 0.2 49 23
33 34 3[5] 334 Y 3[5] 3[5] 0 0 70 35 3[5] 3[6] 0 0.2 45 17
34 2P22-OR 245 26 6[10] 1800 U 6[10] 6[11] 0 0.1 66 35 6[11] 8[13] 0.333 0.181 34 16
35 28 6[9] 1800 U 6[10] 6[10] 0 0 99 25 6[10] 7[12] 0.166 0.2 31 21
36 30 5[9] 1800 U 5[9] 6[9] 0.2 0 64 39 6[10] 7[11] 0.166 0.1 37 12
37 32 5[8] 1800 U 5[8] 5[8] 0 0 98 61 5[9] 6[10] 0.2 0.111 35 12
38 34 5[8] 1800 U 5[8] 5[9] 0 0.125 54 36 5[8] 6[9] 0.2 0.125 31 13
39 36 4[7] 1800 U 4[7] 5[7] 0.25 0 99 31 5[7] 5[10] 0 0.428 25 9
40 38 4[7] 1800 U 4[7] 4[7] 0 0 92 37 4[7] 5[8] 0.25 0.142 33 14
41 40 4[7] 1800 U 4[7] 4[7] 0 0 96 40 4[7] 5[9] 0.25 0.285 39 16
42 42 4[7] 1800 U 4[7] 4[7] 0 0 87 37 4[7] 4[8] 0 0.142 77 20
43 44 4[6] 1800 U 4[6] 4[6] 0 0 70 36 4[6] 4[8] 0 0.333 29 12
44 2P25-OR 155 19 5[9] 1800 U 5[9] 5[10] 0 0.111 88 49 5[9] 7[11] 0.4 0.222 53 19
45 21 4[8] 1800 U 5[8] 5[8] 0 0 71 37 4[8] 6[10] 0.5 0.25 51 24
46 23 4[8] 1800 U 4[8] 5[8] 0.25 0 78 50 4[8] 5[9] 0.25 0.125 48 17
47 25 4[7] 1800 U 4[7] 4[7] 0 0 79 25 4[7] 5[8] 0.25 0.142 44 13
48 27 3[6] 62 Y 3[6] 4[6] 0.333 0 84 50 4[6] 4[7] 0 0.166 46 15
49 29 3[6] 35 Y 3[6] 3[6] 0 0 73 33 3[6] 4[7] 0.333 0.166 38 13
50 31 3[6] 1800 U 3[6] 3[6] 0 0 65 34 3[6] 3[6] 0 0 42 12
51 33 3[5] 1800 U 3[5] 3[5] 0 0 75 35 3[5] 3[6] 0 0.2 37 12
52 35 3[5] 1800 U 3[5] 3[5] 0 0 67 32 3[5] 3[6] 0 0.2 41 11
*Best in bold



Table 3. Test problems and their solutions for large-size problems

CPLEX 2-GA TS# Test 
Problem

 ∑
𝒊 ∈ 𝑰𝒕𝒊 CT

NM[NS] CPU
(s)

Optimality BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev
CPU (ms)

BEST
NM[NS]

MAX
NM[NS]

𝑹𝑷𝑫𝑵𝑴 𝑹𝑷𝑫𝑵𝑺 Avg. 
CPU (ms)

StDev
CPU (ms)

53 2P47-A 712 98 5[9] 1800 U 5[8] 5[9] 0 0.125 634 84 5[9] 6[11] 0.2 0.222 421 45
54 101 4[8] 1800 U 4[8] 5[8] 0.25 0 636 57 5[8] 6[11] 0.2 0.375 485 43
55 104 4[8] 1800 U 4[8] 4[8] 0 0 666 69 5[9] 6[10] 0.2 0.111 549 51
56 107 4[8] 1800 U 4[8] 4[8] 0 0 815 181 4[8] 6[10] 0.5 0.25 631 134
57 110 4[8] 1800 U 4[8] 4[8] 0 0 722 122 4[8] 6[9] 0.5 0.125 765 149
58 113 4[7] 1800 U 4[7] 4[7] 0 0 980 98 4[8] 5[10] 0.25 0.25 648 93
59 2P47-B 856 104 5[9] 1800 U 5[9] 6[10] 0.20 0.111 829 97 6[10] 7[12] 0.166 0.2 822 117
60 108 5[9] 1800 U 5[9] 5[9] 0 0 728 100 5[10] 7[12] 0.4 0.2 748 99
61 112 5[9] 1800 U 5[9] 5[9] 0 0 946 154 5[9] 6[11] 0.2 0.222 620 82
62 116 5[8] 1800 U 4[8] 5[10] 0.25 0.25 1163 172 5[8] 6[11] 0.2 0.375 834 119
63 120 5[8] 1800 U 4[8] 5[8] 0.25 0 856 223 5[9] 6[11] 0.2 0.222 959 166
64 124 4[8] 1800 U 4[8] 5[8] 0.25 0 823 64 4[8] 6[10] 0.5 0.25 649 173
65 2P47-C 1045 110 6[12] 1800 U 6[11] 7[11] 0.166 0 929 147 7[12] 8[14] 0.142 0.166 558 95
66 115 6[10] 1800 U 6[10] 7[11] 0.166 0.1 728 152 6[11] 8[13] 0.333 0.181 645 138
67 120 6[10] 1800 U 6[10] 6[10] 0 0 87 179 6[11] 7[14] 0.166 0.272 814 118
68 125 5[9] 1800 U 5[9] 6[10] 0.20 0.111 880 217 6[10] 7[12] 0.166 0.2 628 107
69 130 6[10] 1800 U 5[9] 5[9] 0 0 879 278 5[9] 7[12] 0.4 0.333 726 117
70 135 6[10] 1800 U 5[9] 5[9] 0 0 917 187 5[9] 6[12] 0.2 0.333 846 127
71 2P47-OR-A 712 99 - 1800 U 4[8] 5[9] 0.25 0.125 1212 444 5[9] 6[10] 0.2 0.111 689 143
72 102 5[9] 1800 U 4[8] 5[9] 0.25 0.125 1732 336 4[8] 6[10] 0.5 0.25 954 243
73 105 - 1800 U 4[8] 4[8] 0 0 1589 316 4[8] 5[9] 0.25 0.125 1086 523
74 108 - 1800 U 4[8] 4[8] 0 0 1433 483 4[8] 5[9] 0.25 0.125 798 412
75 111 - 1800 U 4[7] 4[8] 0 0.142 1833 441 4[8] 5[9] 0.25 0.125 1204 325
76 114 5[9] 1800 U 4[7] 4[8] 0 0.142 1617 383 4[8] 5[9] 0.25 0.125 727 262
77 2P47-OR-B 856 105 - 1800 U 5[9] 5[10] 0 0.111 1571 321 5[10] 6[11] 0.2 0.1 864 167
78 109 - 1800 U 5[9] 5[9] 0 0 2305 344 5[10] 6[11] 0.2 0.1 1054 221
79 113 - 1800 U 5[9] 5[9] 0 0 1597 486 5[9] 6[11] 0.2 0.222 955 147
80 117 - 1800 U 5[9] 5[9] 0 0 1981 627 5[9] 6[10] 0.2 0.111 889 150
81 121 - 1800 U 4[8] 5[9] 0.25 0.125 1865 578 5[9] 6[10] 0.2 0.111 984 214
82 125 - 1800 U 4[8] 4[8] 0 0 1827 354 5[9] 5[10] 0 0.111 805 399
83 2P47-OR-C 1045 112 - 1800 U 6[10] 6[11] 0 0.1 1942 265 6[11] 7[13] 0.166 0.181 997 129
84 120 - 1800 U 5[10] 6[10] 0.20 0 2027 438 6[10] 7[12] 0.166 0.2 1173 208
85 128 - 1800 U 5[9] 5[10] 0 0.111 1464 356 5[10] 6[11] 0.2 0.1 1261 218
86 136 5[10] 1800 U 5[9] 5[9] 0 0 1575 181 5[9] 6[11] 0.2 0.222 761 130
87 144 - 1800 U 4[8] 5[9] 0.25 0.125 1682 396 5[9] 5[10] 0 0.111 1037 344
88 152 - 1800 U 4[8] 4[8] 0 0 2068 438 4[8] 5[10] 0.25 0.25 847 387

*Best in bold



The 2-GA and TS were run for five times to solve each test problem and the results are also presented 

in Table 1. The parameters used for 2-GA and TS are presented in the Appendix-B. Preliminary tests 

have been conducted to determine the parameter levels based on problem size. The column BEST-

NM[NS] reports the best solution obtained after five consecutive runs. The average and standard 

deviation of CPU time consumption (for each run) is also reported in the table in milliseconds – ms  (see 

Avg. CPU and StDev CPU). To measure the general quality of the solutions generated, the column MAX-

NM[NS] which reports the worst solutions of the five runs, is also included in the table. The columns 

 and  represent the relative percentage deviations of NM and NS values between the BEST-𝑅𝑃𝐷𝑁𝑀 𝑅𝑃𝐷𝑁𝑆

NM[NS] and MAX-NM[NS], calculated as follows. 

𝑅𝑃𝐷𝑁𝑀 = 100(𝑀𝐴𝑋𝑁𝑀 ― 𝐵𝐸𝑆𝑇𝑁𝑀)/𝐵𝐸𝑆𝑇𝑁𝑀 (17)

𝑅𝑃𝐷𝑁𝑆 = 100(𝑀𝐴𝑋𝑁𝑆 ― 𝐵𝐸𝑆𝑇𝑁𝑆)/𝐵𝐸𝑆𝑇𝑁𝑆 (18)

As seen in Table 1, 2-GA found optimal solutions for all problems, i.e. #1-#24. As the problems are 

small scale, the time needed to solve the problems was very small (<10-ms). Therefore, there is no much 

difference between CPLEX and 2-GA in terms of the CPU time (except some problems for which 

CPLEX needed 1 second, see for example #20, #22 and #23). Regarding the  and  values, 𝑅𝑃𝐷𝑁𝑀 𝑅𝑃𝐷𝑁𝑆

it can be stated that the solution building capacity of the 2-GA is quite powerful. With regard to TS, 

optimum solutions were obtained for all small-size problems except #3, #15 and #23 within less than 

10-ms. For these three problems, TS solutions require one more workstation than that of 2-GA.

For the medium-size problems, the optimal solutions were found by CPLEX only for a small proportion. 

As the time limit of 1800 second was exceeded in most cases, the optimality of the solutions is not 

known, except those identified with ‘Y’ in its Optimality status (see test problems #25-#27, #30-#33, 

and #48-#49). As seen from Table 2, 2-GA was capable of finding the same solutions with CPLEX for 

24 out of 28 test problems (including the seven test problems solved optimally). For #26 and #45, the 

solution found by 2-GA requires one more mated-station than that of CPLEX. For #25, 2-GA found a 

solution with one more mated-station and workstation in comparison to CPLEX (while only one more 

workstation for #35). In medium-size problems, the gap between the solutions by 2-GA and TS has 

increased. TS found the same solutions with CPLEX for 20 out of 28 test problems. 2-GA outperformed 

TS for problems #26, #34, #36, #37, #39 and #48. One exception is that, TS found a better solution (i.e. 

4[8]) than 2-GA (i.e. 5[8]) only for one problem (i.e. #45) for which TS requires one fewer mated station 

than that of 2-GA. It is clear that 2-GA outperforms TS again for medium-size problems despite slightly 

higher CPU requirements.

When solving the large-size problems via CPLEX, it was observed that the size of nodefile has 

reached to excessive sizes, almost 4 GB (within 1800 seconds) in most cases. Therefore, the 

‘nodefileind’ option was set to ‘2’, which enabled CPLEX store information on disk (rather than 

memory), to overcome the resource limit issues when solving the large-scale problems. Despite these 



modifications, CPLEX was even unable to provide a feasible solution within the 1800 second time limit 

for most problems categorised under 2P47-OR. No integer solution was existing when the time limit 

was exceeded. In that case, only the 2-GA and TS solutions have been provided for some instances of 

test problems 2P47-OR-A, 2P47-OR-B and 2P47-OR-C.

From #53 to #70, CPLEX solutions were presented for 18 test problems, among which 2-GA was able 

to provide six better solutions than CPLEX (see test problems #53, #62, #63, #65, #69 and #70) and 12 

better solutions than TS (i.e. #53-#55, #58-#60, #62-#63 and #65-#68). The results obtained by 2-GA 

were the same with CPLEX for the 12 problems, and with TS for the six test problems. From #71 to #88 

(where the OR relations were considered), 2-GA has clearly outperformed the CPLEX in all instances. 

CPLEX was able to come up with a feasible solution for test problems #72, #76 and #86. However, 

these results were also surpassed by those obtained by 2-GA. The relative percentage deviations, 

presented in columns  and , also indicate that the algorithm is quite steady and effective. 𝑅𝑃𝐷𝑁𝑀 𝑅𝑃𝐷𝑁𝑆

With regard to OR relational problems (#71-#88) TS performed worse than 2-GA for 11 problems, i.e. 

#71, #75-#78, #81-#85 and #87. With the cost of moderately higher CPU times, 2-GA also outperforms 

TS for large-size problems with lower  and  values. However, the CPU times required by 𝑅𝑃𝐷𝑁𝑀 𝑅𝑃𝐷𝑁𝑠

2-GA are still dramatically lower than that required by CPLEX. While CPLEX fell short of finding even 

a feasible solution for most of the test problems of large-size within the time limit, 2-GA was very fast 

and efficient in finding sufficient quality results within a very short period of time.

5. Conclusions and Future Research

Almost three decades have passed since the DLBP was first brought to the attention of the academia. 

However, no research was conducted on two-sided disassembly lines since then. This research 

introduced the TDLBP and defined it providing many challenging issues. The introduced TDLBP was 

also modelled mathematically via a novel MILP model, which can be used for solving small and some 

of the medium-size TDLBPs optimally. A powerful metaheuristic, called 2-GA, was developed 

considering the complex precedence relationship nature of the TDLBPs. The solution building and 

reproduction mechanisms of the proposed 2-GA have been described in detail and demonstrated via 

numerical examples. 

As there is no research published concerning this new problem type, a set of 88 test instances has been 

newly generated modifying existing data for other problem types. Computational tests have been 

conducted using the newly generated data to test the performance of 2-GA. The test problems have been 

solved using both proposed MILP model (via CPLEX), 2-GA and TS and the results were compared. 

The comparison made it clear that 2-GA has a superior and steady performance in terms of both the 

quality of the solutions and the computational time required. The optimal solutions of the problems have 

been obtained for all small-size problems. For the majority of the medium-size problems, specifically 

24 out of 28 test problems, 2-GA obtained the same results with CPLEX. As expected, 2-GA 



outperformed the CPLEX when solving the large-size problems, where the search space grows 

dramatically with the increasing number of tasks. Furthermore, 2-GA also performed better than TS for 

some of the medium-size problems and majority of the large-size problems.

In practice, the proposed 2-GA can be effectively used when the problem size exceeds the capability of 

the proposed MILP model. As it generates robust and high-quality solutions in a very short period of 

time, the decision makers (i.e. line managers in real world) can effectively make use of it to minimise 

the length of the line and increase their line efficiency via minimising the number of 

workstations/operators. 

The MILP model and 2-GA approach proposed in this study can easily be extended to adapt other line 

configurations, such as U-shaped disassembly lines and parallel two-sided disassembly lines (building 

work over Hezer and Kara [9]). The disassembly of more than one product model on the same two-sided 

disassembly line can be of a very interesting research area for future studies. Moreover, new 

metaheuristics can be developed for solving the introduced TDLBP and their performances can be 

compared to 2-GA presented in that work. Finally, the short-term storage of removed parts in the 

workstations can be considered and a time and space DLBP can be introduced in future works.
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Appendix-A. Data Used for Computational Tests

 2P8    2P8-OR
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1
(E, 14)

3
(R, 12)

2
(R, 10)

5
(L, 23)

6
(E, 16)
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(E, 36)

7
(L, 20)

4
(E, 18)

1
(E, 14)

3
(R, 12)

2
(R, 10)

5
(L, 23)

6
(E, 16)

8
(E, 36)

7
(L, 20)

4
(E, 18)

2P10

7
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1
(E, 14)

4
(R, 17)
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(L, 36) 2
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3
(E, 12)

5
(L, 23)
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(R, 14)

10
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2P25

10
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(E, 2)
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7

6

(E, 15)

(E, 15)
A1

9
(R, 
15)3

(E, 3)
1

(R, 3)

2
(E, 2)

5
(L, 10)

4
(E, 10)

11
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(R, 2)

(E, 2)

15

14

(R, 2)

(E, 2)

13
(E, 2)

12
(E, 2)

18
(E, 3)

17
(E, 2)

19

21

(E, 18)

(L, 1)

20
(R, 5)

22
(E, 5)

25
(L, 2)

24
(E, 2)

23
(E, 15)

2P25-OR



10

8

(E, 2)

(L, 15)

7

6

(E, 15)

(E, 15)
A1

9

(R, 15)

3

(E, 3)

1

(R, 3)

2

(E, 2)

5
(L, 10)

4
(E, 10)

11

16

(R, 2)

(E, 2)

15

14

(R, 2)

(E, 2)

13

(E, 2)

12
(E, 2)

18
(E, 3)

17

(E, 2)

19

21

(E, 18)

(L, 1)

20

(R, 5)

22
(E, 5)

25

(L, 2)

24
(E, 2)

23

(E, 15)

2P47

Part Side Time A Time B Time C AND Predecessor(s)
1 E 14 16 18 -
2 L 28 32 36 1
3 E 3 4 9 2
4 R 2 4 6 2
5 L 3 4 9 -
6 R 4 6 8 5
7 E 8 10 12 -
8 E 12 16 20 -
9 E 4 5 6 8
10 E 28 32 36 8
11 L 3 4 9 9,10
12 E 4 6 8 10
13 L 6 8 10 -
14 E 1 2 3 13
15 E 20 24 28 -
16 R 5 7 9 15
17 E 28 32 36 16
18 L 4 6 8 17
19 E 3 4 9 14
20 R 12 16 20 18
21 E 3 4 9 20
22 E 3 4 9 18
23 R 28 32 36 22
24 E 28 32 36 22
25 L 12 16 20 23,24
26 E 76 88 100 19
27 R 6 8 10 26
28 E 28 32 36 27
29 E 3 6 11 28
30 R 6 8 10 29
31 L 3 4 9 30
32 E 98 104 110 1,5,9,18
33 R 14 18 22 32
34 E 2 4 6 33
35 E 6 8 10 33
36 E 7 8 12 34,35
37 L 60 72 84 36
38 E 6 8 10 37
39 E 60 72 84 38



40 E 8 10 12 39
41 R 12 16 20 40
42 E 3 4 9 41
43 R 12 16 20 36
44 E 3 4 9 43
45 E 28 32 36 44
46 E 2 4 6 45
47 E 3 4 9 18

2P47-OR

Part Side Time A Time B Time C AND Predecessor(s) OR Predecessor(s)
1 E 14 16 18 - -
2 L 28 32 36 1 -
3 E 3 4 9 1 -
4 R 2 4 6 2 -
5 L 3 4 9 - 4, 11
6 R 4 6 8 32 -
7 E 8 10 12 6, 42 -
8 E 12 16 20 34 -
9 E 4 5 6 8 -
10 E 28 32 36 45 9, 30
11 L 3 4 9 3 -
12 E 4 6 8 3 -
13 L 6 8 10 12 -
14 E 1 2 3 12 -
15 E 20 24 28 12 -
16 R 5 7 9 32 -
17 E 28 32 36 6 -
18 L 4 6 8 34 -
19 E 3 4 9 14 -
20 R 12 16 20 15 -
21 E 3 4 9 15 -
22 E 3 4 9 14 -
23 R 28 32 36 33 -
24 E 28 32 36 33 -
25 L 12 16 20 - 19, 21
26 E 76 88 100 20 -
27 R 6 8 10 20 -
28 E 28 32 36 - 24, 25, 26
29 E 3 6 11 17, 27 -
30 R 6 8 10 - 18, 28, 29
31 L 3 4 9 - 3, 4
32 E 98 104 110 - 5, 13
33 R 14 18 22 - 16, 22
34 E 2 4 6 - 7, 23
35 E 6 8 10 5 -
36 E 7 8 12 35 -
37 L 60 72 84 35 -
38 E 6 8 10 35 -
39 E 60 72 84 36 -
40 E 8 10 12 36 -
41 R 12 16 20 - 37, 39
42 E 3 4 9 38 -
43 R 12 16 20 38 -
44 E 3 4 9 - 38, 40, 41
45 E 28 32 36 - 37, 42
46 E 2 4 6 - 40, 43
47 E 3 4 9 44 -



Appendix-B. The Parameters Used by 2-GA and TS

  2-GA   TS
Problem Set popSize CR MR maxIter tabuSize maxIter
2P8 8 0.4 0.1 200 16 400
2P10 10 0.4 0.2 200 20 400
2P8-OR 20 0.4 0.2 400 16 800
2P10-OR 20 0.4 0.2 400 20 800
2P-25 20 0.6 0.2 800 50 1600
2P22-OR 20 0.6 0.2 2000 44 4000
2P25-OR 20 0.6 0.2 2000 50 4000
2P47 50 0.6 0.2 5000 94 10000
2P47-OR 50 0.6 0.2 5000 94 10000

Appendix-C. The pseudocode of TS algorithm

Algorithm TS()
1
2
3
4
  4.1
  4.2
  4.3
    4.3.1
    4.3.2
  4.4
  4.5
  4.6
  4.7
  4.8
  4.9
  4.10
  4.11
  4.12
  4.13
    4.13.1
    4.13.2
  4.14
  4.15
5

chrom := buildChrom()
chromFitness := decode(chrom)
iter := 1

WHILE (iter  maxIter) //until a termination criterion is satisfied≤
r1 := random(1,nbTasks), r2 := random(1,nbTasks)
tabu := checkTabu(r1,r2)
WHILE (tabu=true or r1=r2) //until the move is not tabu

r1 := random(1,nbTasks), r2 := random(1,nbTasks)
tabu := checkTabu(r1,r2)

ENDWHILE
neigh := chrom
movedTask := r1th task on neigh
Remove movedTask from neigh
Add movedTask to r2th position on neigh
Repair neigh
tabu1[movedTask][r2] := iter + tabuSize; //update TabuTable1
tabu2[r2][r1] := iter + 2;               //update TabuTable2
neighFitness := decode(neigh)
IF (neighFitness < chromFitness) //if a new solution is better

chrom := neigh
chromFitness := neighFitness

ENDIF
iter := iter+1

ENDWHILE

Submethod checkTabu(r1,r2)
1
 1.1  
2
 2.1
3
4

IF (tabu1[movedTask][r2]  iter  and  tabu2[r2][r1]  iter) ≤ ≤
tabu := false

ELSE
tabu := true

END
return tabu
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Highlights

 The two-sided disassembly line balancing problem (TDLBP) is introduced.

 A new MILP model is developed for the mathematical formulation of TDLBP.

 A powerful genetic algorithm approach, named 2-GA, is developed for TDLBP.

 Computational tests validate the promising performance of 2-GA.

 2-GA can be used to obtain fast and highly efficient solutions for TDLBP.


